
Distributed System Models 

Some ideas from Chapter 1 
© Pearson Education 



2 

Presentation Outline 

 Introduction 

 Physical Models:  
 Three Generations of DS: Early, Internet-Scale, Contemporary  

 Architectural Models 

 Software Layers 

 System Architectures  

 Client-Server 

 Clients and a Single Server, Multiple Servers, Proxy Servers with 
Caches, Peer Model 

 Alternative Client-Sever models driven by: 

 Mobile code, mobile agents, network computers, thin clients, mobile 
devices, and spontaneous networking 

 Design Challenges/Requirements 

 Fundamental Models – formal description 

 Interaction, failure, and security models. 

 Summary 



3 

Introduction 

 Real world systems should be designed to 

function correctly in ALL circumstances/scenarios. 

 Distributed system models helps in… 
 ..classifying and understanding different implementations 

 ..identifying their weaknesses and their strengths 

 ..crafting new systems outs of pre-validated building blocks 

 We will study distributed system models from 

different perspectives 
 Structure, organization, and placement of components 

 Interactions 

 Fundamental properties of systems 

 

 



4 

Characterization 

 The structure and the organization of systems and

the relationship among their components should

be designed with the following goals in mind:
 To cover the widest possible range of circumstances.

 To face the possible difficulties and threats.

 To meet the current and possibly the future demands.

In terms of implementation  models and 

basic blocks 

In terms of logical view of the system, 

interaction flow, and components 



5 

Characterization: Challenges (Difficulties and 

Threats) 

 Widely varying models of use
 High variation of workload, partial disconnection of components,

or poor connection.

 Wide range of system environments
 Heterogeneous hardware, operating systems, network, and

performance.

 Internal problems
 Non synchronized clocks, conflicting updates, various hardware

and software failures.

 External threats
 Attacks on data integrity, secrecy, and denial of service.





7 

Distributed System Design 

 In this chapter it will be showed that how the

properties and design issues of distributed

systems can be captured and discussed

through the use of descriptive models. Each

type of model is intended to provide an

abstract, simplified but consistent description

of a relevant aspect of distributed system

design



8 

Distributed System Design 

 Physical Model
 Physical models are the most explicit way in which to

describe a system; they capture the hardware composition
of a system in terms of the computers and their
interconnecting networks

 Architectural models
 An Architectural model of a distributed system is concerned

with the placement of its parts and relationship between
them

 Fundamental Model
 Fundamental Models are concerned with a formal

description of the properties that are common in all of the
architectural models



9 

Physical Models 

 A representation of the underlying h/w elements

of a DS that abstracts away specific details of the

computer/networking technologies.

 Baseline physical model

 3 Generations of DS:

 Early distributed systems [late 70-80s]: LAN-based

 Internet-scale distributed systems [early 90-2005]:

Clusters, grids, P2P, Clouds

 Contemporary distributed systems: dynamic nodes

like mobile-based services (nodes are very dynamic

not static like other models).



10 

Physical Models 

 Distributed systems of systems

 A recent report discusses the emergence of

ultralarge-scale (ULS) distributed systems 

 systems of systems

 A system of systems can be defined as

a complex system consisting of a

series of subsystems that are systems

in their own right and that come

together to perform a particular task or

tasks.



11 

Generations of distributed systems 



12 

Architectural Models – Intro [1] 

 The architecture of a system is its structure in terms
of separately specified components.
 Its goal is to meet present and likely future demands.

 Major concerns are making the system reliable,
manageable, adaptable, and cost-effective.

 Architectural Model:
 Simplifies and abstracts the functions of individual

components

 The placement of the components across a network of
computers – define patterns for the distribution of data and
workloads

 The interrelationship between the components – ie.,
functional roles and the patterns of communication
between them.



13 

Architectural elements 

 To understand the fundamental building blocks of a
distributed system, it is necessary to consider four
key questions
 What are the entities that are communicating in the

distributed system?

 How do they communicate, or, more specifically, what
communication paradigm is used?

 What (potentially changing) roles and responsibilities
do they have in the overall architecture?

 How are they mapped on to the physical distributed

infrastructure (what is their placement)? 



14 

Communicating entities 

 to address the first question tow perspectives are
exist
 System-oriented perspective

 From a system perspective, the entities that
communicate in a distributed system are typically
processes

 However, In some environments the entities that
communicate are nodes

 Problem-oriented perspective (programming
perspective)
 Objects

 Components

 Web Services



15 

Communication paradigms 

 three types of communication paradigm

 interprocess communication

 communication between processes in distributed

systems, including message-passing primitives,

direct access to the API offered by Internet

protocols

 remote invocation

 indirect communication



16 

Communicating entities and communication 

paradigms 



17 

Roles and responsibilities 

 two architectural styles stemming from the 

role of individual processes 

 client-server  

 peer-to-peer. 



18 18 

System Architectures 

 Client-Server model 
Most often architecture for distributed 

systems. 

Client process interact with individual 
server processes in a separate host 
computers in order to access the shared 
resources 

SYSTEM MODEL  

client client 
server server 



19 19 

System Architectures 

Servers may in turn be clients of other 
servers. 
 E.g. a web server is often a client of a local 

file server that manages the files in which 
the web pages are stored. 

     

SYSTEM MODEL  

Server

Client

Client

invocation

result

Server
invocation

result

Process:
Key:

Computer:



20 

Peer Processes: A distributed application 

based on peer processes 

 All of the processes play similar roles, interacting cooperatively as peers to 
perform distributed activities or computations without distinction between clients 
and servers. E.g., music sharing systems Gnutella, Napster, Kaza, etc. 

 Distributed “white board” – users on several computers to view and interactively 
modify a picture between them. 

Application

Application

Application

Peer 1

Peer 2

Peer 3

Peers 5 .... N

Sharable
objects

Application

Peer 4



21 

P2P with a Centralized Index Server  

(e.g. Napster Architecture) 

 

peer peer 

peer peer 

peer peer 

peer peer 

peer peer 

peer peer 

peer peer 



22 

Placement 

 Placement is crucial in terms of determining 

the properties of the distributed system, most 

obviously with regard to performance but also 

to other aspects, such as reliability and 

security. 

 mapping of services to multiple servers; 

 caching; 

 mobile code; 

 mobile agents. 



23 23 

Placement (2) 

Services provided by multiple servers 
Services may be implemented as several 

server processes in separate host 
computers interacting as necessary to 
provide a service to client processes. 

E.g. cluster that can be used for search 
engines. 

 

SYSTEM MODEL  

Server

Server

Server

Service

Client

Client



24 

Placement(3) 

 Chaching 
 A cache is a store of recently used data objects.  

 When a new object is received at a computer it is 
added to the cache store, replacing some existing 
objects if necessary.  

 When an object is needed by a client process the 
caching service first checks the cache and 
supplies the object from there if an up-to-date 
copy is available.  

 If not, an up-to-data copy is fetched 



25 25 

Placement(4) 

Caches may be collected with each client 
or they may be located in a proxy server 
that can be shared by several clients. 

     

SYSTEM MODEL  

Client

Proxy

Web 

server

Web 

server

server
Client



26 26 

Placement(5) 

Mobile code 
 Applets are a well-known and widely used 

example of mobile code. 

 Applets downloaded to clients give good 
interactive response 

 Mobile codes such as Applets are a potential 
security threat to the local resources in the 
destination computer. 

SYSTEM MODEL  

a) client request results in the downloading of applet code 

Web 

server

Client
Web 

serverApplet

Applet code

Client

b) client  interacts with the applet 



27 27 

Placement(5) 

Mobile Agent 
 A mobile agent is a running program (including 

both code and data) that travels from one 
computer to another in a network carrying out a 
task on someone’s behalf, such as collecting 
information, and eventually returning with the 
results. 

SYSTEM MODEL  



28 

Architectural patterns 

• Layering 

• Tiered architecture 

• Thin clients 



29 

Layering 

 The term software architecture referred: 
 Originally to the structure of software as layers or modules in a single computer. 

 More recently in terms of services offered and requested between processes in the 
same or different computers. 

 Breaking up the complexity of systems by designing them through layers and 
services 
 Layer: a group of related functional components 

 Service: functionality provided to the next layer. 

Layer 1 

Layer 2 

Layer N 

(services offered to above layer) 

… 



30 

Software and hardware service layers in 

distributed systems 

Applications, services

Computer and network hardware

Platform

Operating system 

Middleware



31 

Platform 

 The lowest hardware and software layers are often 
referred to as a platform for distributed systems and 
applications. 

 These low-level layers provide services to the layers 
above them, which are implemented independently 
in each computer.  

 Major Examples 
 Intel x86/Windows 

 Intel x86/Linux 

 Intel x86/Solaris 

 SPARC/SunOS 

 PowerPC/MacOS 

 



32 

Middleware 

 A layer of software whose purpose is to mask heterogeneity present 
in distributed systems and to provide a convenient programming 
model to application developers. 

 Major Examples: 

 Sun RPC (Remote Procedure Calls) 

 OMG CORBA (Common Object Request Broker Architecture) 

 Microsoft D-COM (Distributed Components Object Model) 

 Sun Java RMI 

 Modern Middleware: 

 Manjrasoft Aneka– for Cloud computing 

 IBM WebSphere 

 Microsoft .NET 

 Sun J2EE 

 Google AppEngine 

 



33 

Tiered Architecture 

 Tiered architectures are complementary to 
layering 

 
 three-tiered architecture 

 the presentation logic 

 the application logic 

 the data logic 



34 

 Two-tier model (classic) 

 

 

 

 Three-tier (when the server, becomes a client) 

 

 

 

 Multi-tier (cascade model) 

Client-Server Architecture Types 

client client server server 

client client Server/client Server/client server server 

client client Server/client Server/client 
server server 

Server/client Server/client 

server server 



35 

The Role of AJAX 

 AJAX is as an extension to the standard client-server 
style of interaction used in the World Wide Web 

 The constraint of Standard HTTP 
 Once the browser has issued an HTTP request for a 

new web page, the user is unable to interact with the 
page until the new HTML content is received and 
presented by the browser 

 In order to update even a small part of the current 
page with additional data from the server, an entire 
new page must be requested and displayed 

 The contents of a page displayed at a client cannot be 
updated in response to changes in the application 
data held at the server 

 AJAX enables Javascript front-end programs to 
request new data directly from server programs.  



36 36 

Thin Clients 

Thin clients 
 It is a software layer that supports a 

window-based user interface on a 
computer that is local to the user while 
executing application programs on a 
remote computer. 

This architecture has the same low 
management and hardware costs as the 
network computer scheme. 

 Instead of downloading the code of 
applications into the user’s computer, it 
runs them on a compute server. 

SYSTEM MODEL  



37 37 

Thin Clients 

Compute server is a powerful computer 
that has the capacity to run large numbers 
of application simultaneously.  

The compute server will be a 
multiprocessor or cluster computer 
running a multiprocessor version of  an 
operation system such as UNIX or 
Windows.  

         

SYSTEM MODEL  

Thin 
Client 

Application 
Process 

Network computer or PC 

network 



38 

Network Computer vs. Thin clients 

 Network computer: download OS and applications from the 
network and run on a desktop (solve up-gradation problem) at 
runtime. 

 Thin clients: Windows-based UI on the user machine and 
application execution on a remote computer. E.g, X-11 system. 

N.C 
Client 

Application 
Process 

Network computer or PC 
Compute server 

network 



39 

Presentation Outline 

 Introduction 

 Architectural Models 

 Software Layers 

 System Architectures  

 Client-Server 

 Clients and a Single Sever, Multiple Servers, Proxy Servers with 
Caches, Peer Model 

 Alternative Client-Sever models driven by: 

 Mobile code, mobile agents, network computers, thin clients, mobile 
devices and spontaneous networking 

 Design Challenges/Requirements 

 Fundamental Models – formal description 

 Interaction, Failure, and Security models. 

 Summary 



40 

Fundamental Model 

 All architectural models are composed of processes that 
communicate with each other by sending messages over a 
computer networks. 

 Fundamental Models are concerned with a formal description of 
the properties that are common in all of the architectural models. 

 

 Models addressing time synchronization, message delays, 
failures, security issues are: 

 Interaction Model – deals with performance and the difficulty of 
setting of time limits in a distributed system. 

 Failure Model – specification of the faults that can be exhibited by 
processes 

 Security Model – discusses possible threats to processes and 
communication channels. 



41 

Interaction Model 

 Computation occurs within processes; 

 The processes interact by passing messages, 
resulting in: 
 Communication (information flow) 

 Coordination (synchronization and ordering of activities) 
between processes. 

 Two significant factors affecting interacting 
processes in a distributed system are: 
 Communication performance is often a limiting 

characteristic. 

 It is impossible to maintain a single global notion of time. 



42 

Interaction Model: 

Performance of Communication Channel 

 Communication over a computer network has performance 
characteristics: 
 Latency:  

 A delay between the start of a message’s transmission from one 
process to the beginning of reception by another. 

 Bandwidth:  
 the total amount of information that can be transmitted over in a 

given time.  

 Communication channels using the same network, have to share the 
available bandwidth. 

 Jitter 
 The variation in the time taken to deliver a series of messages. It is 

very relevant to multimedia data. 



43 

Interaction Model: 

Computer clocks and timing events 

 Each computer in a DS has its own internal clock, which can be 
used by local processes to obtain the value of the current time. 

 Therefore, two processes running on different computers can 
associate timestamp with their events. 

 However, even if two processes read their clocks at the same 
time, their local clocks may supply different time. 
 This is because computer clock drifts from perfect time and their 

drift rates differ from one another.  

 Even if the clocks on all the computers in a DS are set to the 
same time initially, their clocks would eventually vary quite 
significantly unless corrections are applied. 
 There are several techniques to correct time on computer clocks. 

For example, computers may use radio receivers to get readings 
from GPS (Global Positioning System) with an accuracy about 1 
microsecond. 



44 

Interaction Model: 

Two variants of the interaction model 

 In a DS it is hard to set time limits on the time taken for process 
execution, message delivery or clock drift.  

 Synchronous DS – hard to achieve: 

 The time taken to execute a step of a process has known lower 
and upper bounds. 

 Each message transmitted over a channel is received within a 
known bounded time. 

 Each process has a local clock whose drift rate from real time has 
known bound. 

 Asynchronous DS: There is NO bounds on: 

 Process execution speeds 

 Message transmission delays 

 Clock drift rates. 



45 

Interaction Model: 

Event Ordering 

 In many DS applications we are interested in 

knowing whether an event occurred before, 

after, or concurrently with another event at 

other processes.  

 The execution of a system can be described in 

terms of events and their ordering despite the lack 

of accurate clocks. 

 Consider a mailing list with: 

        users X, Y, Z, and A. 



46 

Real-time ordering of events 

send

receive

send

receive

m1 m2

2

1

3

4
X

Y

Z

Physical 

time

A

m3

receive receive

send

receive receive receive

t1 t2 t3

receive

receive

m2

m1



47 

Inbox of User A looks like: 

 Due to independent delivery in message delivery, message may 
be delivered in different order. 

 If messages m1, m2, m3 carry their time t1, t2, t3, then they can 
be displayed to users accordingly to their time ordering. 

Item From Subject 

23 Z Re: Meeting 

24 X Meeting 

26 Y Re: Meeting 



48 

Failure Model 

 In a DS, both processes and communication 

channels may fail – i.e., they may depart from 

what is considered to be correct or desirable 

behavior.  

 Types of failures: 

 Omission Failure 

 Arbitrary Failure 

 Timing Failure 



49 

Processes and channels 

 Communication channel produces an omission failure if it 
does not transport a message from “p”s outgoing 
message buffer to “q”’s incoming message buffer. This is 
known as “dropping messages” and is generally caused 
by a lack of buffer space at the receiver or at gateway or 
by a network transmission error. 

process p process q

Communication channel

send

Outgoing message buffer Incoming message buffer

receivem



50 

Omission and arbitrary failures 

Class of failure Affects Description 

Fail-stop Process Process halts and remains halted. Other processes may 
detect this state. 

Crash Process Process halts and remains halted. Other processes may 
not be able to detect this state. 

Omission Channel A message inserted in an outgoing message buffer never 
arrives at the other end’s incoming message buffer. 

Send-omission Process A process completes a   send, but the message is not 
put in its outgoing message buffer. 

Receive-omission Process A message is put in a process’s incoming message 
buffer, but that process does not receive it. 

Arbitrary 
(Byzantine) 

Process or 
channel 

Process/channel exhibits arbitrary behaviour: it may 
send/transmit arbitrary messages at arbitrary times, 
commit omissions; a process may stop or take an 
incorrect step. 



51 

Timing failures 

Class of Failure Affects Description 

Clock Process Process’s local clock exceeds the bounds on its 
rate of drift from real time. 

Performance Process Process exceeds the bounds on the interval 
between two steps. 

Performance Channel A message’s transmission takes longer than the 
stated bound. 



52 

Masking Failures 

 It is possible to construct reliable services from 

components that exhibit failures. 

 For example, multiple servers that hold replicas of data can 

continue to provide a service when one of them crashes. 

 A knowledge of failure characteristics of a 

component can enable a new service to be designed 

to mask the failure of the components on which it 

depends: 

 Checksums are used to mask corrupted messages. 



53 

Security Model 

 The security of a DS can be achieved by 

securing the processes and the channels 

used in their interactions and by protecting 

the objects that they encapsulate against 

unauthorized access. 



54 

Protecting Objects: Objects and principals 

 Use “access rights” that define who is allowed to perform operation on a 
object. 

 The server should verify the identity of the principal (user) behind each 
operation and checking that they have sufficient access rights to perform 
the requested operation on the particular object, rejecting those who do 
not. 

Network

invocation

result

Client
Server

Principal (user) Principal (server)

ObjectAccess rights



55 

The enemy  

 To model security threats, we postulate an enemy that is capable of 
sending any process or reading/copying message between a pair of 
processes 

 Threats form a potential enemy: threats to processes, threats to 
communication channels, and denial of service. 

Communication channel 

Copy of  m 

Process  p Process  q m 

The enemy 
m’ 



56 

Defeating security threats: Secure channels 

 Encryption and authentication are use to build secure channels. 

 Each of the processes knows the identity of the principal on 
whose behalf the other process is executing and can check their 
access rights before performing an operation. 

Principal  A 

Secure channel Process  p Process  q 

Principal  B 



57 

Summary 

 Most DSs are arranged accordingly to one of a 
variety of architectural models: 
 Client-Server 

 Clients and a Single Sever, Multiple Servers, Proxy Servers 
with Cache, Peer Model 

 Alternative Client-Sever models driven by: 

 Mobile code, mobile agents, network computers, thin clients, 
mobile devices and spontaneous networking 

 Fundamental Models – formal description 

 Interaction, failure, and security models. 

 The concepts discussed in the module play an 
important role while architecting DS and apps 


